Tetrahedron Letters No. 40, pp 3661 - 3662, 1976. Pergamon Press. Printed in Great Britain.

IODOHYDRINS AND IODOHYDRIN ESTERS. VI.¹ A GENERAL PROCEDURE FOR THE PREPARATION OF trans-1,2-IODOCARBOXYLATES

Matteo Adinolfi, Michelangelo Parrilli, Gaspare Barone, Guglielmo Laonigro, Lorenzo Mangoni Istituto di Chimica Organica dell'Universita', Napoli (Italia)

(Received in UK 26 July 1976; accepted for publication 19 August 1976)

trans-1,2-Iodoacetates have been shown to be easily obtained by reaction of alkenes with I_2/KIO_3 in acetic acid. The process is assumed to occur through the *anti* attack of AcOH on an iodonium ion, the role of KIO_3 being to favour the formation of this latter by the continous reoxidation of the iodide ion produced in the electrophilic addition step.²

N-iodosuccinimide (NIS) has now been found to be a very convenient alternative to the I_2/KIO_3 system as a source of positive iodine. In fact, *trans*-2-iodocyclohexyl acetate and 3α -iodo- 5α -cholestanyl 2ß-acetate were obtained in near quantitative yield when cyclohexene (1 hr, r.t.) and 5α -cholest-2-ene (1 hr, 60°), respectively, were reacted with NIS in AcOH.

More interestingly, the reaction with NIS and a carboxylic acid in an aprotic solvent could be imagined to be a general procedure for the obtaining of *trans*-1,2-iodocarboxy-lates other than *trans*-1,2-iodoacetates. The I_2/KIO_3 system, indeed, cannot be used with a carboxylic acid not suitable as the solvent (e.g., benzoic acid) or very prone to add to double bonds (e.g., trifluoroacetic acid).⁺

As a matter of fact, chloroform was found to be a good solvent for the reaction. The carboxylic acids tested and the results obtained are shown in the Table. A typical procedure follows:

To a solution of 5a-cholest-2-ene (1 mmole) in chloroform (10 ml, filtered on Al_2O_3), benzoic acid (2 mmoles) and NIS (1.3 mmoles) are added. After 3 hr stirring at 60°, the cooled reaction mixture was diluted with ether (30 ml), washed with 2N Na_2CO_3 , 5N $Na_2S_2O_3$, water and dried. Evaporation of the solvent and chromatography on silica gel with 98:2 hexane-ether gave 3a-iodo-5a-cholestanyl 28-benzoate (82%).

(+) The reaction of 5α -cholest-2-ene in CF₃COOH with I_2/KIO_3 at 60° gives only a mixture of 5α -cholestanyl 2- and 3-trifluoroacetates (our unpublished result).

3661

Table			
Reaction of olefins (1 mole) with NIS (1.3 moles) and carboxylic acid (2 moles) in CHC1 ₃			
	Acid Tim	me, temperatur	e Product and yield ^a
Cyclohexene	АсОН	1 hr, r.t.	<i>trans</i> -2-iodo-cyclohexyl acetate, ³ >95%
0	BzC00H	1 hr, r.t.	$trans$ -2-iodo-cyclohexyl benzoate, 3 >95%
н	CF3COOH	1 hr, r.t.	$trans$ -2-iodo-cyclohexyl trifluoroacetate, 3 >95%
5α-cholest-2-ene	AcOH	2 hr, 60°	3α-iodo-5α-cholestanyl 2β-acetate, ^{b,4} >90%
	BzC00H	3 hr, 60°	3α-iodo-5α-cholestanyl 2β-benzoate, ^{b,C} 82%
18	CF3COOH	1 hr, 60°	3α-iodo-5α-cholestanyl 2β-trifluoroacetate, ^{b,5} >95%
н	нсоон	1 hr, 60°	3α-iodo-5α-cholestanyl 2β-formate, ^{b,d} >95%
н	p-C1-BzCOOH	3 hr, 60°	3α -iodo- 5α -cholestanyl 2 β -p-clorobenzoate, ^{b,e} 73%
н	p-N0 ₂ -BzCOOH ^f	3 hr, 60°	3α-iodo-5α-cholestanyl 2β-p-nitrobenzoate, ^{b,g} 70%

(a) All yields are of pure, isolated products. All known products have been identified by comparison (NMR, TLC, m.p.) with authentical samples. (b) In addition to 3α -iodo- 5α -cholestanyl 2β -carboxylate, a <5% yield of the isomeric 2β -iodo- 5α -cholestanyl 3α -carboxylate was obtained. (c) M.p. 74-5°; $[\alpha]_D$ (CCl₄) +83°; δ (CCl₄) 4.60 (3β -H) and 5.35 (2α -H). (d) M.p. 110-1°; $[\alpha]_D$ (CCl₄) +99°; δ (CCl₄) 4.48 (3β -H), 5.12 (2α -H) and 7.84 (-0CO*H*). (e) M.p. 82-4°; $[\alpha]_D$ (CCl₄) +78°; δ (CCl₄) 4.60 (3β -H) and 5.32 (2α -H). (f) Solvent: CHCl₃ with 3% dioxane. (g) M.p. 146-8°; $[\alpha]_D$ (CCl₄) +68°; δ (CCl₄) 4.65 (3β -H) and 5.40 (2α -H).

When this work was completed, a paper⁶ appeared reporting the use of the reaction of olefins with NBS and AcOAg in AcOH to obtain *cis*-diols through *trans*-1,2-bromoacetates, not isolated. This *cis*-hydroxylation method is analogous to that reported by us some years ago.⁴ However, our method, of which the French Authors seem to be not aware, very advantageously avoids the use of expensive silver acetate.

REFERENCES

- 1. Part V: Tetrahedron Letters, 207 (1976).
- M.Parrilli, G.Barone, M.Adinolfi, L.Mangoni, <u>Gazz. Chim. It.</u>, <u>104</u> 835 (1974) and references therein.
- 3. R.C.Cambie, R.C.Hayward, J.L.Roberts, P.S.Rutledge, J. Chem. Soc. Perkin I, 1858 (1974).
- L.Mangoni, M.Adinolfi, G.Barone, M.Parrilli, <u>Tetrahedron Letters</u>, 4485 (1973); <u>Gazz. Chim</u>. <u>It.</u> 105 377 (1975).
- 5. D.G.Hey, G.D.Meakins, M.W.Pemberton, J. Chem. Soc. (C), 1331 (1966).
- 6. D.Jasserand, J.P.Girard, J.C.Rossi, R.Granger, Tetrahedron Letters, 1581 (1976).